Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur J Med Chem ; 117: 321-34, 2016 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-27161176

RESUMO

In this work, we present and discuss a comprehensive set of both newly and previously synthesized compounds belonging to 5 distinct molecular classes of linear aromatic N-polycyclic systems that efficiently inhibits bovine viral diarrhea virus (BVDV) infection. A coupled in silico/in vitro investigation was employed to formulate a molecular rationale explaining the notable affinity of all molecules to BVDV RNA dependent RNA polymerase (RdRp) NS5B. We initially developed a three-dimensional common-feature pharmacophore model according to which two hydrogen bond acceptors and one hydrophobic aromatic feature are shared by all molecular series in binding the viral polymerase. The pharmacophoric information was used to retrieve a putative binding site on the surface of the BVDV RdRp and to guide compound docking within the protein binding site. The affinity of all compounds towards the enzyme was scored via molecular dynamics-based simulations, showing high correlation with in vitro EC50 data. The determination of the interaction spectra of the protein residues involved in inhibitor binding highlighted amino acids R295 and Y674 as the two fundamental H-bond donors, while two hydrophobic cavities HC1 (residues A221, I261, I287, and Y289) and HC2 (residues V216, Y303, V306, K307, P408, and A412) fulfill the third pharmacophoric requirement. Three RdRp (K263, R295 and Y674) residues critical for drug binding were selected and mutagenized, both in silico and in vitro, into alanine, and the affinity of a set of selected compounds towards the mutant RdRp isoforms was determined accordingly. The agreement between predicted and experimental data confirmed the proposed common molecular rationale shared by molecules characterized by different chemical scaffolds in binding to the BVDV RdRp, ultimately yielding compound 6b (EC50 = 0.3 µM; IC50 = 0.48 µM) as a new, potent inhibitor of this Pestivirus.


Assuntos
Vírus da Diarreia Viral Bovina/efeitos dos fármacos , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Animais , Antivirais/química , Antivirais/farmacologia , Sítios de Ligação/genética , Doença das Mucosas por Vírus da Diarreia Viral Bovina/tratamento farmacológico , Doença das Mucosas por Vírus da Diarreia Viral Bovina/prevenção & controle , Bovinos , Vírus da Diarreia Viral Bovina/enzimologia , Ligação de Hidrogênio , Modelos Moleculares , Hidrocarbonetos Policíclicos Aromáticos/farmacologia , RNA Polimerase Dependente de RNA/efeitos dos fármacos
2.
Nanoscale ; 7(9): 3876-87, 2015 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-25340619

RESUMO

Generation 2 cationic carbosilane dendrimers hold great promise as internalizing agents for gene therapy as they present low toxicity and retain and internalize the genetic material as an oligonucleotide or siRNA. In this work we carried out complete in silico structural and energetical characterization of the interactions of a set of G2 carbosilane dendrimers, showing different affinity towards two single strand oligonucleotide (ODN) sequences in vitro. Our simulations predict that these four dendrimers and the relevant ODN complexes are characterized by similar size and shape, and that the molecule-specific ODN binding ability can be rationalized only by considering a critical molecular design parameter: the normalized effective binding energy ΔG(bind,eff)/N(eff), i.e. the performance of each active individual dendrimer branch directly involved in a binding interaction.


Assuntos
Dendrímeros/química , Oligonucleotídeos/química , Silanos/química , Cátions/química , Conformação Molecular , Simulação de Dinâmica Molecular , Oligonucleotídeos/metabolismo , RNA Interferente Pequeno/química , RNA Interferente Pequeno/metabolismo , Termodinâmica
3.
Biochemistry ; 53(18): 2993-3003, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24766040

RESUMO

The σ1 receptor is an integral membrane protein that shares no homology with other receptor systems, has no unequivocally identified natural ligands, but appears to play critical roles in a wide variety of cell functions. While the number of reports of the possible functions of the σ1 receptor is increasing, almost no information about the three-dimensional structure of the receptor and/or possible modes of interaction of the σ1 protein with its ligands have been described. Here we performed an in vitro/in silico investigation to analyze the molecular interactions of the σ1 receptor with its prototypical agonist (+)-pentazocine. Accordingly, 23 mutant σ1 isoforms were generated, and their interactions with (+)-pentazocine were determined experimentally. All direct and/or indirect effects exerted by the mutant residues on the receptor-agonist interactions were reproduced and rationalized in silico, thus shining new light on the three-dimensional structure of the σ1 receptor and its ligand binding site.


Assuntos
Receptores sigma/metabolismo , Sítios de Ligação , Simulação por Computador , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Mutagênese Sítio-Dirigida , Pentazocina/metabolismo , Receptores sigma/agonistas
4.
Curr Med Chem ; 19(29): 5062-87, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22963635

RESUMO

Due to the relative easy synthesis and commercial availability, nanovectors based on dendrimers and dendrons are among the most utilized non-viral vectors for gene transfer. Contextually, recent advances in molecular simulations and computer architectures not only allow for accurate predictions of many structural, energetical, and eventual self-assembly features of these nanocarriers per se, but are able to yield vital (and perhaps otherwise unattainable) molecular information about the interactions of these nanovectors with their nucleic acid cargoes. In the present work, we aim at reviewing our own efforts in the field of multiscale molecular modeling of these interesting materials. In particular, our originally developed computational recipes will be presented, and the link between simulations and experiments will be described and discussed in detail. This review is written by computational scientists for experimental scientists, with the specific purpose of illustrating the potentiality of these methodologies and the usefulness of multiscale molecular modeling as an innovative and complementary tool in their current research.


Assuntos
Dendrímeros/química , Terapia Genética/métodos , Técnicas de Transferência de Genes , Humanos , Micelas , Modelos Moleculares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...